

Vol. 6 No. 1 (2023) pp. 81-88

JURNAL BIOMEDIKA DAN KESEHATAN (JOURNAL OF BIOMEDIKA AND HEALTH)

e-ISSN: 2621-5470

ORIGINAL ARTICLE

Factors Associated with Complaints of Computer Vision Syndrome (CVS) Among Informatics Engineering Students, University of Muhammadiyah Prof. DR. HAMKA

Faktor-Faktor yang Berhubungan dengan Keluhan Computer Vision Syndrome (CVS) pada Mahasiswa Teknik Informatika Universitas Muhammadiyah Prof. DR. HAMKA

Agi Candra Gupta¹, Retno Mardhiati¹, Nia Musniati¹ ¹Department of Public Health, Faculty of Health Science Muhammadiyah University Prof. DR. HAMKA, Jakarta, Indonesia

Magicandra95@gmail.com

https://doi.org/10.56186/jbk.81-88

ABSTRACT

Background

Computers or laptops are needed for learning and working media for young children of productive age with a university-level education to balance their mobility. However, long-term use of a computer or laptop can cause eye problems, including Computer Vision Syndrome (CVS). This study aims to determine the factors associated with Computer Vision Syndrome (CVS) complaints in Informatics Engineering students at the University of Muhammadiyah Prof. DR. HAMKA South Jakarta in 2022.

Methods

This research is a quantitative study with a Cross-Sectional study design. The sampling technique uses the Quota Sampling method with 150 respondents. Data collection was carried out using an online questionnaire with google forms. The analysis used is univariate analysis and bivariate analysis.

Results

The results showed that respondents with positive CVS symptoms (70.7%) with the most complaints were tired and strained eyes (77.3%). The Chi-square test between risk factors and CVS obtained results, gender (p = 0.725), the use of glasses (p = 0.011), duration of exposure to computer or laptop screens (p < 0.0001), taking eyes breaks (p = 0.002), the distance between eyes and computer or laptop screen (p = 0.049), and body position when using a computer or laptop (p = 0.006).

Conclusions

The significantly related risk factors to CVS were the use of glasses, duration of exposure to computer or laptop screens, taking eye breaks, the distance between eyes and computer or laptop screen, and body position when using a computer or laptop. At the same time, gender is not associated with CVS complaints.

Keywords: Computer Vision Syndrome (CVS); Computer; Laptop; Informatics Engineering

ABSTRAK

Latar Belakang

Komputer atau laptop dibutuhkan untuk media belajar maupun bekerja pada usia produktif karena memiliki aktivitas mobilitas yang tinggi. Namun, penggunaan komputer atau laptop yang lama, dapat menimbulkan keluhan pada mata, salah satunya Computer Vision Syndrome (CVS). Penelitian ini bertujuan untuk mengetahui faktor-faktor yang berhubungan dengan keluhan Computer Vision Syndrome (CVS) pada mahasiswa Teknik Informatika Universitas Muhammadiyah Prof. DR. HAMKA Jakarta Selatan tahun 2022.

Metode

Penelitian ini merupakan penelitian kuantitatif dengan desain studi Cross Sectional. Sampel terdiri dari 150 mahasiswa yang telah memenuhi kriteria inklusi dan ekslusi dengan pengambilan sampel menggunakan teknik Quota Sampling. Pengambilan data menggunakan kuesioner online berupa Google Form. Analisis yang digunakan adalah analisis univariat dan analisis bivariat.

Hasil

Hasil penelitian menunjukkan bahwa 70,7% responden memiliki gejala positif CVS dengan keluhkan paling banyak adalah mata lelah dan tegang (77.3%). Uji Chi-square antara faktor risiko dengan CVS diperoleh hasil, yaitu jenis kelamin (p = 0.725), penggunaan kacamata (p = 0.011), durasi paparan layar komputer/laptop (p < 0.0001), istirahat mata (p = 0.002), jarak mata dengan layar komputer/laptop (p = 0.049) dan posisi tubuh saat menggunakan komputer/laptop (p = 0.006).

Kesimpulan

Faktor risiko yang berhubungan terhadap keluhan CVS adalah penggunaan kacamata, durasi paparan layar komputer/laptop, istirahat mata, jarak mata dengan layar komputer/laptop, dan posisi tubuh saat menggunakan komputer/laptop. Sedangkan jenis kelamin tidak berhubungan dengan keluhan CVS.

Kata Kunci: Computer Vision Syndrome (CVS), Komputer, Laptop, Teknik Informatika

INTRODUCTION

Tuberculosis is a global health problem affecting almost 23% of the world's population, with 10 million new cases yearly. In developed countries, tuberculosis infection seems mostly found in certain groups, such as diabetic persons. Since obesity and diabetes mellitus become a worldwide problem, the increased risk of tuberculosis infection with worse clinical manifestations and treatment failure needs to be concerned.¹ A population-based cohort study by Lee et al. in Eastern China showed that diabetes increased the hazard of tuberculosis, especially in individuals with poor glycemic control and high blood lipid level.² The prevalence of pulmonary tuberculosis rises with the increased incidence of diabetes, with higher morbidity and mortality.³ In Indonesia, the prevalence rate of tuberculosis in 2010 was about 289 per 100,000 population, estimated at 450,000 new cases, and an incidence rate of 189 per 100,000 population. It made Indonesia the 5th country in the world in tuberculosis infection.^{4,5}

Pulmonary tuberculosis in adults is usually made based on clinical presentation and chest Xray examination and confirmed by acid-fast bacilli found in microscopic examination.⁶ On the other hand, diabetes mellitus is a chronic high blood glucose level due to impaired insulin secretion, known as type 1 diabetes, or hampered action of insulin or a combination of both, known as type 2 diabetes.⁷ This condition can affect the immune system, leading to susceptibility towards infections, including TB. A recent meta-analysis reported that the relative risk of TB in diabetic patients was 3.11 (95% CI 2.27–4.26) compared with individuals without DM in cohort studies.⁸ Another meta-analysis, including 17 studies involving more than 1 million participants, found that the pooled OR of prevalent TB was increased 2.05 fold in subjects with HbA1C>7.0% compared to those with HbA1C<7.0%.⁹

There are controversies about whether glycemic control affects negative sputum conversion, where some studies showed that there was no connection between them^{10,} and many other studies showed the opposite. ^(4,11-14) This study was conducted to determine the effect of glycemic control, which showed by random blood glucose level (RBG), HbA1C and the percentage of blood sugar level decrement, to the negative sputum conversion in diabetic patients with pulmonary tuberculosis. Even though many studies have been performed, this study will try to determine which parameter of the three used showed the best sensitivity and specificity in affecting negative sputum smear conversion.

METHODS

This is an analytic observational study using a cross-sectional design conducted in Rumah Sakit Bhayangkara R. Said Sukanto – Kramat Jati – Jakarta from 12 September until 12 October 2018. Data were taken from the medical record. The population of the study were diabetic patients diagnosed with pulmonary tuberculosis as new cases from January 2017 to July 2018. The inclusion criteria were those above 35 years of age with newly found positive sputum smear from January 2017 to July 2018 that have been intensively treated for two months and evaluated for sputum smear, RBG, and HbA1C by the end of the second month. The exclusion criteria were smokers, patients with HIV or extrapulmonary tuberculosis, and patients with multi-drug resistance (MDR-TB) or who dropped out of therapy before two months. Subjects of this study were taken using consecutive nonrandom sampling. The number of samples needed was calculated with the Infinite and Finite populations (the prevalence of TB in diabetic patients was 28.2%).¹⁵ Samples were added with a 15% dropout, so the total number of subjects needed for this study was 97. Data for this study were taken from the subjects' medical records, including demographic data (age and gender), confirmation of newly recorded positive sputum smear, and results of laboratory findings for RBG, HbA1C and sputum conversion before and after intensive tuberculosis treatment for two months. Data collected was then analyzed univariately for characteristic distribution and bivariate for the relationships between glycemic controls (RBG, HbA1C, blood glucose decrement) and negative sputum conversion, using Statistical Package for Social Sciences (SPSS) program for Windows version 25.0. The proposal for this study was approved by Komisi Etik Riset Fakultas Kedokteran Universitas Trisakti no 63/KER-FK/VIII/2018 on July 2018.

RESULTS

Characteristics of subjects

One hundred subjects were included in this study, which is dominated by a group of 56-65 years of age (4; most of the subjects are male (67%). Based on glycemic control, most subjects have a controlled RBG, less than 200 mg/dL (79%) and controlled HbA1C, less than 7% (72%). The percentage of RBG decrement from these subjects mostly was at a range of 31-50% (42%), followed

by more than 50% (24%), while subjects with uncontrolled RBG decrement were 9%. Of these 100 subjects, 77% showed microscopic negative sputum smear of acid-fast bacilli conversion.

Variable	Ν	%
Age (years old)		
35-45	8	8.0
46-55	40	40.0
56-65	42	42.0
>65	10	10.0
Sex		
Male	67	67.0
Female	33	33.0
Serum glucose level by the end of therapy		
Controlled (<200 mg/dL)	79	79.0
Uncontrolled (≥ 200 mg/dL)	21	21.0
HbA1C level by the end of therapy		
Controlled (≥7%)	72	72.0
Uncontrolled (<7%)	28	28.0
Percentage of serum sugar decrement		
Uncontrolled	9	9.0
≤ 10%	5	5.0
11-30%	20	20.0
31-50%	42	42.0
>50%	24	24.0
Microscopic sputum smear conversion by the end of		
therapy		
Positive	23	23.0
Negative	77	77.0

Table 1. Subjects characteristics

Relationship between glycemic control and negative sputum smear conversion

RBG and negative sputum smear conversion

Results showed that the subjects with controlled RBG had a higher percentage of negative sputum smear conversion. In contrast, subjects with uncontrolled RBG microscopic AFB sputum smear remained positive, and only one subject showed negative sputum smear conversion. Analysis using the Fisher test (p-value of 0.000) indicated that there is a significant relationship between RBG and AFB sputum smear conversion

HbA1C and negative sputum smear conversion

The subjects with controlled HbA1C had a higher percentage of negative sputum smear conversion. In contrast, in subjects with uncontrolled HbA1C, microscopic AFB sputum smear in most subjects remains positive (20 from 28 subjects). The Fisher test analysis (p-value of 0.000) indicated a significant relationship between HbA1C and AFB sputum smear conversion.

RBG decrement and negative sputum smear conversion

Groups of subjects with 31-50% decrement of RBG showed the highest percentage of negative sputum smear conversion (42%), followed by subjects with more than 50% RBG decrement (24%) compared to subjects with uncontrolled RBG decrement that showed only 9% AFB sputum smear conversion. The Fisher test analysis (p-value of 0.000) indicated a significant relationship between RBG decrement and AFB sputum smear conversion.

Glycemic control	Micr	Microscopic AFB negative smear conversion				Total	
	Pos	Positive		Negative			
	Ν	%	N	%	N	%	
Random blood glucose level (RBG)							
Controlled (<200 mg/dL)	3	3.0	76	76	79	79.0	0.000*
Uncontrolled (≥200 mg/dL)	20	20.0	1	1.0	21	21	
HbA1C							
Controlled (<7%)	3	3.0	69	69.0	72	72.0	0.000*
Uncontrolled (≥7%)	20	20.0	8	8.0	28	28.0	
RBG level decrement							
Uncontrolled	7	7.0	2	2.0	9	9.0	0.000*
≤ 10%	5	5.0	0	0	5	5.0	
11-30%	6	6.0	14	14.0	20	20.0	
31-50%	3	3.0	39	39.0	42	42.0	
>50%	2	2.0	22	22.0	24	24.0	

Table 2. Relationship between glycemic control and negative sputum smear conversion

* Fisher exact test

DISCUSSION

Univariate analysis

Based on univariate analysis of data collected, it was found that TB in diabetic subjects is dominated mainly by the elderly group (> 45 years old). This finding was similar to the result from a study conducted by Kulsum et al. and Wijayanto et al. at RSUP Persahabat. The average age of TB in diabetic patients was 53.71 and 58.6 years. It might be caused by glucose intolerance that increases with age. The aging process is one of the main factors of insulin sensitivity decrement, mitochondrial dysfunction, decrement of proliferative capacity and increase of apoptosis of pancreatic β cells. Lifestyle also contributes to insulin sensitivity, especially in older people with less physical activity and higher consumption of carbohydrates and fat.^{10,15}

The analysis also showed that most subjects are men. It is similar to reports from the Department of Gender and Women's Health World Health Organization which stated that tuberculosis incidence and prevalence were higher in men than women. This may be caused by risk factors and higher exposures that are more common in men, such as smoking, working environment, air pollution, industrial pollution etc.¹⁴ This finding differed from the results of the Wijayanto et al. study, which found that TB in diabetic was higher in women (59.2%) compared to men (40.8%). Unfortunately, there was no further explanation about it.¹⁵

This study also showed that most subjects had good glycemic control, as shown in RBG (79% compared to 21%), HbA1C (72% compared to 28%) and RBG decrement (42% with 31-50% and 24% with more than 50% decrement compared to 9% with uncontrolled decrement). This result was in line with microscopic AFB negative sputum smear conversion found in 77% of the subject compared to 23% who remained AFB positive. This showed that good glycemic control gives a better response to TB therapy.^{4,12,14-16}

Bivariate analysis

Gupta et al.

According to bivariate analyses, it was found that all three indicators showed a strong relationship between glycemic control and negative AFB sputum smear conversion, that is, using RBG, decrement of RBG and HbA₁C, with p-value = 0.000 (< 0.05). The table also showed that negative conversion in patients with controlled RBG and HbA₁C were higher than those who remained positive (76% to 3% and 69% to 3%, respectively). In the uncontrolled group, it was found that fewer subjects showed negative AFB sputum smear conversion (1% to 20% and 8% to 20%, respectively). It has been known that uncontrolled high blood sugar levels affect the interaction of monocyte and M. tuberculosis bacteria, decreasing the immune system. Poor glycemic control also reduces serum anti-TB drug concentration. It increases the risk of its toxicity, resulting in TB treatment failure, and the sputum AFB smear will remain positive.^{9,11,17-20} Another study also showed that poor glycemic control also affects the radiographic manifestation of pulmonary TB in diabetic patients.²¹

Based on RBG decrement, it has been found that patients with 31-50% RBG decrement had the highest percentage of negative AFB sputum smear conversion, followed by those with more than 50% decrement (39% and 22%, respectively). On the other hand, those with less RBG decrement showed unsuccessful conversion (7% in uncontrolled decrement, 5% in less than 10% decrement groups) p-value value of 0.000 using Fisher exact study conducted by Mahisale et al. pointed out that optimal glycemic control will give better success in therapy. It also decreased the risk of multidrug resistance in TB treatment (MDR-TB). This same suggestion was also found in a study of TB control by Alisjahbana et al. in Indonesia that suggested that DM may implicate TB control in Indonesia.^{15,22} This result differed from a study by Oceguera et al., which found no significant differences in smear and culture conversion between patients with TB and patients with TB+DM, including cases with inadequate glycemic control and those with MDR-TB.²³ The difference may be caused by the subjects of the study being largely different. In their study, patients with TB + DM were significantly older than TB patients without DM with significantly higher RBG levels. At the end of their discussion, they also mention that although deficient glycemic control does not correlate with culture conversion, diabetes harms TB treatment outcomes, with higher failure, relapse, and mortality rates.

This study was conducted using three different parameters of glycemic control (RBG, HbA1C and RBG decrement). We tried to calculate the sensitivity and specificity of each parameter to find the best parameter, using the formula of sensitivity that is true positive compared to all sick subjects (true positive + false negative) and specificity that is true negative compared to all healthy subjects (true negative + false positive). The calculation found that RBG has the highest sensitivity, followed by RBG decrement and HbA1C (98.7%, 97.4% and 89.6%, respectively). As for specificity, RBG and HbA1C shared the same percentage, 86.9%, while RBG decrement was the lowest (30.4%). From that calculation, we assume that RBG can be chosen as the best parameter with the highest sensitivity and specificity.

The limitation of this study is that we only compare the effect of glycemic control to negative AFB sputum smear conversion without analyzing other factors that can interfere with the success of therapy, such as smoking, family support, or other medication consumed.

This study was conducted to find the relationship between glycemic control and the success of TB treatment in diabetic patients. From this result, we hope all subjects understand the importance of compliance in lifestyle adjustment to reach better glycemic control, so the failure of TB treatment can be avoided.

CONCLUSION

Glycemic control was strongly associated with the success of TB treatment. Negative AFB sputum smear conversion was higher in controlled diabetic patients, with pulmonary higher negative conversion in the controlled group. RBG can be used as a glycemic control parameter as it has good sensitivity and specificity.

ACKNOWLEDGEMENT

Thank you to Rumah Sakit Bhayangkara R. Said Sukanto, Brigjen. Pol dr. Musyafak, Kombes Pol. dr. Rachmawati Arshad, MARS, dr. Liana Sibagariang and all the staff.

AUTHORS CONTRIBUTION

As the principal researcher, DS prepares proposals, collects research data, and reviews and approves manuscripts. LMS reviews proposals, prepares manuscript drafts, and approves manuscripts

FUNDING

Research funds were covered by the researcher (personally), and this study did not receive funding assistance from any party.

CONFLICT OF INTEREST

There is no conflict of interest between the two authors in this study.

REFERENCES

- 1. Wang MC, Cervantes J. Glycemic control in tuberculosis: Lessons learned from Taiwan. Asian Pac J Trop Med. 2019;12(10):438–41.
- 2. Lee PH, Fu H, Lai TC, Chiang CY, Chan CC, Lin HH. Glycemic Control and the Risk of Tuberculosis: A Cohort Study. PLoS Med. 2016;13(8):1–24.
- 3. Putra ON, Hardiyono H, Pitaloka EDP. Evaluasi Konversi Sputum dan Faktor Korelasinya pada Pasien Tuberkulosis Paru Kategori I dengan Diabetes Melitus. J Farm Dan Ilmu Kefarmasian Indones. 2021;8(1):38.
- 4. Wulandari DR, Sugiri YJ. Diabetes Melitus dan Permasalahannya pada Infeksi Tuberkulosis. 2013;33(2):126–34.
- 5. Ugarte-Gil C, Alisjahbana B, Ronacher K, Riza AL, Koesoemadinata RC, Malherbe ST, et al. Diabetes mellitus among pulmonary tuberculosis patients from 4 tuberculosis-endemic countries: The tandem study. Clin Infect Dis. 2020;70(5):780–8.
- 6. Huang LK, Wang HH, Lai YC, Chang SC. The impact of glycemic status on radiological manifestations of pulmonary tuberculosis in diabetic patients. PLoS One. 2017;12(6):1–13.
- 7. Cadena J, Rathinavelub S, Lopez-Alvarenga JC, Restrepo BI. The re-emerging association between tuberculosis and diabetes: lessons from past centuries. Elsevier [Internet]. 2019;open-acces. Available from: https://www.elsevier.com/open-access/userlicense/1.0/
- 8. Chiang CY, Bai KJ, Lin HH, Chien ST, Lee JJ, Enarson DA, et al. The influence of diabetes, glycemic control, and diabetes-related comorbidities on pulmonary tuberculosis. PLoS One. 2015;10(3):e0121698.

- 9. Chen Z, Liu Q, Song R, Zhang W, Wang T, Lian Z, et al. The association of glycemic level and prevalence of tuberculosis: a meta-analysis. BMC Endocr Disord. 2021;21(1):1–14.
- 10. Kulsum ID. Faktor-faktor yang mempengaruhi konversi sputum Basil Tahan Asam mikroskopik pada akhir bulan kedua pengobatan tuberkulosis pada pasien tuberkulosis paru kasus baru dengan diabetes melitus di RSUP Persahabatan= Factors associated with sputum smear convers (Thesis). Faculty of medicine: Indonesia University; 2015
- 11. Martinez L, Zhu L, Castellanos ME, Liu Q, Chen C, Hallowell BD, et al. Glycemic Control and the Prevalence of Tuberculosis Infection: A Population-based Observational Study. Clin Infect Dis. 2017;65(12):2060–8.
- 12. Tok P, Salvaraji L, Rosli N, Badrul HAS, Tok P. Impact of diabetes mellitus on the sputum conversion among new smear positive pulmonary tuberculosis patients in Johor Bahru, Malaysia. Johor Heal J. 2016;12:1–9.
- 13. Mahishale V, Avuthu S, Patil B, Lolly M, Eti A, Khan S. Effect of poor glycemic control in newly diagnosed patients with smear-positive pulmonary tuberculosis and type-2 diabetes mellitus. Iran J Med Sci. 2017;42(2):144.
- 14. Shaifuddin SNM, Azmi A, Yusof MZM. Analysing Sociodemographic Factors: Highlighting Gender in Tuberculosis Treatment and Defaulters. Malaysian J Med Heal Sci. 2022;18(3):36–40.
- Wijayanto A, Burhan E, Nawas A. Faktor Terjadinya Tuberkulosis Paru pada Pasien Diabetes Melitus Tipe
 J Respirologi Indones. 2015;1:1–11.
- 16. Torres NMC, Rodríguez JJQ, Andrade PSP, Arriaga MB, Netto EM. Factors predictive of the success of tuberculosis treatment: A systematic review with meta-analysis. PLoS One. 2019;14(12):1–24.
- 17. Teskey G, Cao R, Cerni S, Chang L, Fahmy K, Geiger J, et al. The pathogenesis of tuber culosis-diabetes comorbidity. MRA. 2017;5(12):1613.
- 18. Gurukartick J, Murali L, Shewade HD, Jacob AG, Samy MM, Dheenadayal D, et al. Glycemic control monitoring in patients with tuberculosis and diabetes: A descriptive study from programmatic setting in Tamil Nadu, India. F1000Research. 2019;8:1–12.
- Pranoto A, Studi P, Jenjang K, Fakultas D, Universitas K, Epidemiologi D, et al. Kendali Glikemik pada Pasien Diabetes Melitus Tipe 2 dengan dan tanpa Tuberkulosis Paru Glycemic Control in Type 2 Diabetes Mellitus Patients with and without Pulmonary Tuberculosis. J MKMI [Internet]. 2019;15(1):99–109. Available

https://www.researchgate.net/publication/334255803_Kendali_Glikemik_pada_Pasien_Diabetes_Melit us_Tipe_2_dengan_dan_tanpa_Tuberkulosis_Paru

- 20. Han X, Wang Q, Wang Y, Cai J, Ma Y, Zhou X, et al. The impact of diabetes on tuberculosis treatment outcomes: evidence based on a cumulative meta-analysis. Vol. 36, International Journal of Diabetes in Developing Countries. Springer India; 2016. p. 490–507.
- 21. Chiang CY, Lee JJ, Chien ST, Enarson DA, Chang YC, Chen YT, et al. Glycemic control and radiographic manifestations of tuberculosis in diabetic patients. PLoS One. 2014;9(4).
- 22. Abebe G, , Zegeye Bonsa WK. Treatment Outcomes and Associated Factors in Tubercul osis Patients at Jimma University Medical Center: A 5-Year Retrospective Study Gemeda. Int J Mycobacteriology. 2017;6(3):239–45.
- 23. Oceguera DM, Laborin RL. Glycemic Control and Rate of Sputum Conversion in Diabetic Patients with Pulmonary Tuberculosis. J Lung Dis Treat. 2016;2(1):1-3

This work is licensed under a Creative Commons Attribution Non-Commercial 4.0 International License